CuFePMg EN: - UNS: C19700 |
High strength modified copper alloy, best combinations of electrical conductivity, mechanical strength, forming properties and stress relaxation resistance. Magnesium is an important element to form fine dispersoids having a particle diameter of 200 nm or less with P in the copper alloy to thereby improve the strength and the stress relaxation property. These fine Mg-P particles highly contribute to inhibiting the dislocation migration and the grain growth and to the improvement in bendability and stress relaxation property. Forms available: Strips, sheets
CuFePMg fits applications requiring excellent hot and cold workability as well as high strength and conductivity and rheological resistance.
Basic properties
|
|||||
Density [g/cm3] | Specific heat capacity [J/(kg*K)] | Temperature coefficient of electrical resistance (0...100°C) [10-3/K] | Electrical conductivity [T=20°C, (% IACS)] | Thermal conductivity [W/(m*K)] | Thermal expansion coefficient 20...300°C [10-6/K] |
8,89-8,92 | 377 Comments: C19710 370 Comments: C19720 394 Comments: C19750 | No data | 80 | 277 | 17,3 |
Copper alloy having the chemical composition shown in below table was melted in a coreless furnace and an ingot-making was performed by a semi-continuous casting method to yield an ingot 70 mm thick, 200 mm wide and 500 mm long. The surface of each ingot was subjected to facing, followed by heating. There after hot rolling was performed to prepare a sheet 16 mm thick and the resulting sheet was quenched in water from temperature 650°C or higher. Oxidized scale was removed and there after primary cold rolling was performed. The resulting sheet was subject to facing and thereafter to primary annealing and cold rolling. Subsequently, secondary annealing and finish cold rolling were performed and then strain relieving annealing at low temperature was performed to thereby yield alloy sheet about 0.2 mm thick.
The copper alloy sheet sample was processed into a slip-shaped test piece of 10 mm in width and 300 mm in length by milling, an electric resistance was measured with a double bridge resistance meter, and the electrical conductivity was calculated by an average cross-sectional area method.
Electrical conductivity of CuFePMg alloys with different Fe, P and Mg additions
No of alloy | Fe | P | Mg | Electrical conductivty | Literature |
---|---|---|---|---|---|
wt% | %IACS | ||||
1 | 0,15 | 0,10 | 0,25 | 71 | |
2 | 0,91 | 0,10 | 0,25 | 68,7 | |
3 | 0,15 | 0,02 | 0,25 | 65,5 | |
4 | 0,15 | 0,36 | 0,25 | 68 | |
5 | 0,15 | 0,10 | 0,10 | 63,8 | |
6 | 0,15 | 0,10 | 0,92 | 69 | |
7 | 0,15 | 0,10 | 0,25 | 63,5 | |
8 | 0,15 | 0,10 | 0,25 | 62,1 | |
9 | 0,15 | 0,10 | 0,25 | 61 | |
10 | 0,00 | 0,10 | 0,25 | 63 | |
11 | 1,05 | 0,10 | 0,25 | 65 | |
12 | 0,15 | 0,00 | 0,25 | 64,3 | |
13 | 0,15 | 0,46 | 0,25 | 67,5 | |
14 | 0,15 | 0,10 | 0,04 | 59 | |
15 | 0,15 | 0,10 | 1,10 | 68,4 |
Electrical conductivity of CuFePMg alloys for different Fe, P and Mg content
Electrical conductivity of CuFeMgP alloy with Ni, Co, Zn and Sn additions
No of alloys | Fe | P | Mg | Ni | Co | Zn | Sn | Electrical conductivity |
---|---|---|---|---|---|---|---|---|
Wt % | IACS | |||||||
1 | 0,10 | 1,00 | 0,25 | 0,20 | 0,20 | 0,10 | 0,10 | 61,8 |
2 | 0,10 | 0,10 | 0,25 | 0,20 | 0,20 | 0,10 | 0,10 | 63,5 |
3 | 0,10 | 0,10 | 0,25 | 0,20 | 0,20 | 0,10 | 0,10 | 63,3 |
4 | 0,10 | 0,10 | 0,25 | 0,20 | 0,20 | 0,10 | 0,10 | 57,8 |
5 | 0,10 | 0,10 | 0,25 | 0,20 | 0,20 | 0,10 | 0,10 | 63,8 |
6 | 0,10 | 0,10 | 0,25 | 0,20 | 0,20 | 0,10 | 0,10 | 63,5 |
Lead frames, Electrical springs, electrical terminals, Connectors, Springs, Clips, Terminals, Sockets. Literature:
Chemical composition
|
Value | Comments | |
Cu [ wt.% ] | 98,3-99,08 | Calculated | |
Fe [ wt.% ] | 0,05-0,4 | ||
Mg [ wt.% ] | 0,3-0,6 | ||
Ni [ wt.% ] | 0,1 | ||
P [ wt.% ] | 0,07-0,15 | ||
Pb [ wt.% ] | 0-0,05 | ||
Sn [ wt.% ] | 0,2 | ||
Zn [ wt.% ] | 0,2 |
Chemical composition of CuFePMg (C19720)
Chemical composition, weight percentage, | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Ag | Mg | Sn | Ni | Si | Cr | Zr | Fe | P | Pb | Zn | other | Cu |
- | 0.06-0.2 | 0.20 | 0.10 | - | - | - | 0.05-0.5 | 0.05-0.15 | max. 0,05 | 0.20 | - | rest |
- | Nom.0.13 | - | - | - | - | - | Nom.0.22 | Nom.0.10 |
| - |
| 99.6 |
Chemical composition of CuFePMg (C19750)
Chemical composition, weight percentage, | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Ag | Mg | Sn | Ni | Si | Cr | Zr | Fe | P | Pb | Zn | Co | Cu |
- | 0.01-0.20 | 0.05-0.4 | 0.05 | - | - | - | 0.35-1.2 | 0.10-0.40 | max. 0,05 | 0.20 | 0.05 | rest |
- | Nom.0.10 | Nom.0.22 | - | - | - | - | Nom.0.8 | Nom.0.25 |
| - |
| 99.6 |
Mechanical properties
|
||||||
UTS [MPa] | YS [MPa] | Elongation [%] | Hardness | Young’s modulus [GPa] | Kirchhoff’s modulus [GPa] | Poisson ratio |
500-670 | 450-655 | 2-15 | 130 Comments: [HV] | 119 | No data | 0,33 |
Mechanical requirements of CuFePMg alloy according ASTM standards (different tempers)
Temper |
Tensile strength, MPa |
Yield strength 0,2%, MPa |
Elongation 50, % |
Literature |
---|---|---|---|---|
O61 |
275-435 |
110 |
10 |
|
H02 |
365-435 |
250 |
6 |
|
H04 |
415-485 |
365 |
3 |
|
H06 |
460-505 |
440 |
2 |
|
H08 |
485-525 |
460 |
2 |
|
H10 |
505-550 |
485 |
1 |
Mechanical requirements of CuFePMg according PMX Industries INC
Temper |
Tensile strength, MPa |
Literature | |
---|---|---|---|
min |
max |
||
HO20 |
365 |
434 |
|
HO40 |
414 |
483 |
|
HO60 |
462 |
503 |
|
HO80 |
483 |
524 |
Each copper alloy having the chemical composition shown in below table was melted in a coreless furnace and an ingot-making was performed by a semi-continuous casting method to yield an ingot 70 mm thick, 200 mm wide and 500 mm long. The surface of each ingot was subjected to facing, followed by heating. There after hot rolling was performed to prepare a sheet 16 mm thick and the resulting sheet was quenched in water from temperature 650°C or higher. Oxidized scale was removed and there after primary cold rolling was performed. The resulting sheet was subject to facing and thereafter to primary annealing and cold rolling. Subsequently, secondary annealing and finish cold rolling were performed and then strain relieving annealing at low temperature was performed to thereby yield alloy sheet about 0.2 mm thick.
Mechanical properties of CuFePMg alloys
No of alloy |
Fe |
P |
Mg |
Proof stress |
Hardness |
---|---|---|---|---|---|
Wt % |
MPa |
HV | |||
1 |
0,15 |
0,10 |
0,25 |
410 |
136 |
3 |
0,91 |
0,10 |
0,25 |
403 |
135 |
4 |
0,15 |
0,02 |
0,25 |
415 |
37 |
5 |
0,15 |
0,36 |
0,25 |
408 |
136 |
6 |
0,15 |
0,10 |
0,10 |
417 |
137 |
7 |
0,15 |
0,10 |
0,92 |
405 |
135 |
8 |
0,15 |
0,10 |
0,25 |
428 |
140 |
9 |
0,15 |
0,10 |
0,25 |
433 |
141 |
10 |
0,15 |
0,10 |
0,25 |
440 |
143 |
14 |
0,00 |
0,10 |
0,25 |
432 |
141 |
15 |
1,05 |
0,10 |
0,25 |
360 |
126 |
16 |
0,15 |
0,00 |
0,25 |
418 |
137 |
17 |
0,15 |
0,46 |
0,25 |
395 |
133 |
18 |
0,15 |
0,10 |
0,04 |
406 |
136 |
19 |
0,15 |
0,10 |
1,10 |
400 |
134 |
Hardness and electrical conductivity of CuFePMg alloy
Mechanical properties of CuFePMg alloys with Ni, Co, Zn and Sn additions
No of alloy |
Fe |
P |
Mg |
Ni |
Co |
Zn |
Sn |
Proof stress |
Hardness |
---|---|---|---|---|---|---|---|---|---|
%wt |
MPa |
HV | |||||||
1 |
0,10 |
1,00 |
0,25 |
0,20 |
0,20 |
0,10 |
0,10 |
430 |
140 |
2 |
0,10 |
0,10 |
0,25 |
0,20 |
0,20 |
0,10 |
0,10 |
392 |
133 |
3 |
0,10 |
0,10 |
0,25 |
0,20 |
0,20 |
0,10 |
0,10 |
390 |
132 |
4 |
0,10 |
0,10 |
0,25 |
0,20 |
0,20 |
0,10 |
0,10 |
421 |
138 |
5 |
0,10 |
0,10 |
0,25 |
0,20 |
0,20 |
0,10 |
0,10 |
390 |
132 |
6 |
0,10 |
0,10 |
0,25 |
0,20 |
0,20 |
0,10 |
0,10 |
420 |
138 |
This example compares the softening resistance of several alloys of this invention as previously described in the aforenoted examples to commercial alloys. Alloys were air melted with charcoal cover and Durville cast to yield twelve pound ingots 15mmx10mmx4,37 mm. The casting temperature was about 1125°C to about 1150°C. The resulting ingots were homogenized at about 850-9000C for 2 hours, then rolled from 4,37 to 1 mm in seven passes with no reheating. To resolutionize the precipitated alloying elements, the strips were returned to the furnace and held at about 850-900°C for 1 hour and then water quenched. The strips were then milled to remove oxide scale and cold rolled to 0,1 mm. The cold rolled strips were then annealed for 2 hours at about 500-5750C. The material was then cold rolled to 0,01 mm, annealed to about 450-500°C for about 2 hours and then measured for electrical conductivity. The material was then finally rolled to 0.025 mm gauge for property measurments. Softening resistance was determined by annealing samples of material at 0.025 mm gauge for 1 hour at various temperatures between 300-550°C followed by measuring the respective Vickers hardness values.
Chemical composition of CuFePMg alloys
Type of alloy |
Fe |
Mg |
P |
Sn |
Ni |
---|---|---|---|---|---|
Wt % | |||||
alloy 1 |
1 |
0,13 |
0,32 |
- | - |
alloy 2 |
0,99 |
0,13 |
0,33 |
0,25 |
- |
alloy3 |
0,72 |
0,11 |
0,31 |
0,25 |
0,29 |
Softening curves of CuFePMg alloys
C19700 exhibits good corrosion resistance in natural atmosphere (also sea air) and industrial atmosphere. It is insensitive to stress corrosion cracking.
Type of corrosion | Suitability | Literature |
---|---|---|
Atmospheric | Good | |
Marine environment | - | |
Stress crack | Good | |
Hydrogen embrittlement | - | |
Electrolytic | - |
CuFePMg has a good relaxation stress resistance.
Stress remaining after 1000 hours of CuFePMg (C19700)
Each test piece was heated and held at 150°C for 1000 hours and the stress relaxation property of the test was evaluated according to the method of Electronics Materials manufacturers Association of Japan Standard. Specifically , one side of the test piece after heating was held, and the stress under a load 80% of the 0,2 proof stress as an initial stress was determined. This coarse dispersoids containing Mg and P having an average particle diameter exceeding the upper limit. In addition, the alloy has a markedly low electrical conductivity because of excessive P dissolved to form a solid solution and is low in strength, bendability and stress relaxation property.
Stress relaxation of CuFePMg alloys
No of alloy |
Fe |
P |
Mg |
Proof stress |
Stress relaxation rate |
Literature |
---|---|---|---|---|---|---|
Wt.% |
MPa |
% | ||||
1 |
0,15 |
0,10 |
0,25 |
410 |
16 |
|
3 |
0,91 |
0,10 |
0,25 |
403 |
16 |
|
4 |
0,15 |
0,02 |
0,25 |
415 |
19 |
|
5 |
0,15 |
0,36 |
0,25 |
408 |
15 |
|
6 |
0,15 |
0,10 |
0,10 |
417 |
19 |
|
7 |
0,15 |
0,10 |
0,92 |
405 |
17 |
|
8 |
0,15 |
0,10 |
0,25 |
428 |
15 |
|
9 |
0,15 |
0,10 |
0,25 |
433 |
14 |
|
10 |
0,15 |
0,10 |
0,25 |
440 |
15 |
|
14 |
0,00 |
0,10 |
0,25 |
432 |
15 |
|
15 |
1,05 |
0,10 |
0,25 |
360 |
17 |
|
16 |
0,15 |
0,00 |
0,25 |
418 |
23 |
|
17 |
0,15 |
0,46 |
0,25 |
395 |
22 |
|
18 |
0,15 |
0,10 |
0,04 |
406 |
23 |
|
19 |
0,15 |
0,10 |
1,10 |
400 |
22 |
Stress relaxation degree for CuFePMg alloy
Rheological properties and Proof stress of CuFePMg alloys with Ni, Co, Zn and Sn additions
No of alloy |
Fe |
P |
Mg |
Ni |
Co |
Zn |
Sn |
Proof stress |
Stress relaxation rate |
Literature |
---|---|---|---|---|---|---|---|---|---|---|
Wt% |
MPa |
% | ||||||||
20 |
0,10 |
1,00 |
0,25 |
0,20 |
0,20 |
0,10 |
0,10 |
430 |
21 |
|
21 |
0,10 |
0,10 |
0,25 |
0,20 |
0,20 |
0,10 |
0,10 |
392 |
24 |
|
22 |
0,10 |
0,10 |
0,25 |
0,20 |
0,20 |
0,10 |
0,10 |
390 |
24 |
|
23 |
0,10 |
0,10 |
0,25 |
0,20 |
0,20 |
0,10 |
0,10 |
421 |
22 |
|
24 |
0,10 |
0,10 |
0,25 |
0,20 |
0,20 |
0,10 |
0,10 |
390 |
25 |
|
25 |
0,10 |
0,10 |
0,25 |
0,20 |
0,20 |
0,10 |
0,10 |
420 |
25 |
Bendability of CuFePMg according PMX Industries INC
Temper | 90° good way | bad way | Literature |
---|---|---|---|
H020 | 0.5 | 0.5 | |
Ho40 | 1 | 1 | |
Ho60 | 1.5 | 2 | |
Ho80 | 2 | 3 |
Typical yield strength available at a 1t 90 degree Good way bend samples 17.5 mm in width
A bending test of CuFePMg alloy sheet was performed. A test piece of 10 mm in width and 30 mm in length was taken from each sample, GOOD WAY beneding (the bending axis is perpendicular to the rolling direction) was preformed, and the presence or absence of cracking at the bending portion was visually observed under an optical microscope at a magnification of 50 times. The bendability was evaluated according to the following criteria: Good: no cracking, Fair: slight cracking, Failure: apparent cracking
Bendability of CuFePMg alloy
No of alloy | Fe | P | Mg | Proof Stress | Bendability | Literature |
---|---|---|---|---|---|---|
Wt % | MPa |
| ||||
1 | 0,15 | 0,10 | 0,25 | 410 | good | |
3 | 0,91 | 0,10 | 0,25 | 403 | good | |
4 | 0,15 | 0,02 | 0,25 | 415 | good | |
5 | 0,15 | 0,36 | 0,25 | 408 | good | |
6 | 0,15 | 0,10 | 0,10 | 417 | good | |
7 | 0,15 | 0,10 | 0,92 | 405 | good | |
8 | 0,15 | 0,10 | 0,25 | 428 | good | |
9 | 0,15 | 0,10 | 0,25 | 433 | good | |
10 | 0,15 | 0,10 | 0,25 | 440 | good | |
14 | 0,00 | 0,10 | 0,25 | 432 | good | |
15 | 1,05 | 0,10 | 0,25 | 360 | good | |
16 | 0,15 | 0,00 | 0,25 | 418 | failure | |
17 | 0,15 | 0,46 | 0,25 | 395 | good | |
18 | 0,15 | 0,10 | 0,04 | 406 | failure | |
19 | 0,15 | 0,10 | 1,10 | 400 | fair |
Bendability of CuFePMg alloy
No of alloy | Fe | P | Mg | Ni | Co | Zn | Sn | Proof stress | Bendability |
---|---|---|---|---|---|---|---|---|---|
wt % | MPa | ||||||||
20 | 0,10 | 1,00 | 0,25 | 0,20 | 0,20 | 0,10 | 0,10 | 430 | failure |
21 | 0,10 | 0,10 | 0,25 | 0,20 | 0,20 | 0,10 | 0,10 | 392 | failure |
22 | 0,10 | 0,10 | 0,25 | 0,20 | 0,20 | 0,10 | 0,10 | 390 | fair |
23 | 0,10 | 0,10 | 0,25 | 0,20 | 0,20 | 0,10 | 0,10 | 421 | Failure |
24 | 0,10 | 0,10 | 0,25 | 0,20 | 0,20 | 0,10 | 0,10 | 390 | failure |
25 | 0,10 | 0,10 | 0,25 | 0,20 | 0,20 | 0,10 | 0,10 | 420 | fair |
Fabrication properties
|
Value | Comments | |
Soldering | Good | ||
Brazing | Good | ||
Hot dip tinning | Excellent | ||
Laser welding | Good | ||
Oxyacetylene Welding | Fair | ||
Gas Shielded Arc Welding | Good | ||
Coated Metal Arc Welding | Fair | ||
Spot Weld | Good | ||
Seam Weld | Good | ||
Butt Weld | Good | ||
Capacity for Being Cold Worked | Good | ||
Capacity for Being Hot Formed | Good | ||
Forgeability Rating | 65 | 65% of C37700 (forging brass) | |
Machinability Rating | 20 | 20% of C36000 (free-cutting brass) |
Technological properties
|
||||||||
Melting temperature [°C] | Casting temperature [°C] | Castability | Annealling temperature [°C] | Homogenization temperature [°C] | Quenching temperature [°C] | Ageing temperature [°C] | Stress relievieng temperature [°C] | Hot working temperature [°C] |
1080-1090 | No data | No data | 350-550 | No data | No data | No data | No data | 760-930 |