Login

CuFePMg
EN: -
UNS: C19700

High strength modified copper alloy, best combinations of electrical conductivity, mechanical strength, forming properties and stress relaxation resistance. Magnesium is an important element to form fine dispersoids having a particle diameter of 200 nm or less with P in the copper alloy to thereby improve the strength and the stress relaxation property. These fine Mg-P particles highly contribute to inhibiting the dislocation migration and the grain growth and to the improvement in bendability and stress relaxation property. Forms available: Strips, sheets

CuFePMg fits applications requiring excellent hot and cold workability as well as high strength and conductivity and rheological resistance.

Basic properties

Basic properties
Density
[g/cm3]
Specific heat capacity
[J/(kg*K)]
Temperature coefficient of electrical resistance (0...100°C)
[10-3/K]
Electrical conductivity
[T=20°C, (% IACS)]
Thermal conductivity
[W/(m*K)]
Thermal expansion coefficient 20...300°C
[10-6/K]
8,89-8,92
377
Comments:
C19710

370
Comments:
C19720

394
Comments:
C19750
No data 80
277
17,3

Copper alloy having the chemical composition shown in below table was melted in a coreless furnace and an  ingot-making was performed by a semi-continuous casting method to yield an ingot 70 mm thick, 200 mm wide and 500 mm long. The surface of each ingot was subjected to facing, followed by heating. There after hot rolling was performed to prepare a sheet 16 mm thick and  the resulting sheet was quenched in water from temperature 650°C or higher. Oxidized scale was removed and  there  after primary cold rolling was performed. The resulting sheet was subject to facing and thereafter to primary annealing and cold rolling. Subsequently, secondary annealing and finish cold rolling were performed and then strain relieving annealing at low temperature was performed to thereby yield alloy sheet about 0.2 mm thick.

The copper alloy sheet sample was processed into a slip-shaped test piece of 10 mm in width and 300 mm in length by milling, an electric resistance was measured with a double bridge resistance meter, and the electrical conductivity was calculated by an average cross-sectional area method.

Electrical conductivity of CuFePMg alloys  with different Fe, P and Mg additions

No of alloy

Fe

P

Mg

Electrical conductivty

Literature

wt%

%IACS

1

0,15

0,10

0,25

71

2

0,91

0,10

0,25

68,7

3

0,15

0,02

0,25

65,5

4

0,15

0,36

0,25

68

5

0,15

0,10

0,10

63,8

6

0,15

0,10

0,92

69

7

0,15

0,10

0,25

63,5

8

0,15

0,10

0,25

62,1

9

0,15

0,10

0,25

61

10

0,00

0,10

0,25

63

11

1,05

0,10

0,25

65

12

0,15

0,00

0,25

64,3

13

0,15

0,46

0,25

67,5

14

0,15

0,10

0,04

59

15

0,15

0,10

1,10

68,4

Electrical conductivity of CuFePMg alloys for different Fe, P and Mg content

Electrical conductivity of CuFeMgP alloy with Ni, Co, Zn and Sn additions

No of alloys

Fe

P

Mg

Ni

Co

Zn

Sn

Electrical conductivity

Wt %

IACS

1

0,10

1,00

0,25

0,20

0,20

0,10

0,10

61,8

2

0,10

0,10

0,25

0,20

0,20

0,10

0,10

63,5

3

0,10

0,10

0,25

0,20

0,20

0,10

0,10

63,3

4

0,10

0,10

0,25

0,20

0,20

0,10

0,10

57,8

5

0,10

0,10

0,25

0,20

0,20

0,10

0,10

63,8

6

0,10

0,10

0,25

0,20

0,20

0,10

0,10

63,5

Applications

Lead frames, Electrical springs, electrical terminals, Connectors, Springs, Clips, Terminals, Sockets. Literature:

Chemical composition

Chemical composition
Value Comments
Cu [ wt.% ]98,3-99,08
Calculated
Fe [ wt.% ]0,05-0,4

Mg [ wt.% ]0,3-0,6

Ni [ wt.% ]0,1

P [ wt.% ]0,07-0,15

Pb [ wt.% ]0-0,05

Sn [ wt.% ]0,2

Zn [ wt.% ]0,2

Chemical composition  of  CuFePMg (C19720)

Chemical composition, weight percentage,

Ag

Mg

Sn

Ni

Si

Cr

Zr

Fe

P

Pb

Zn

other

Cu

-

0.06-0.2

0.20

0.10

-

-

-

0.05-0.5

0.05-0.15

max. 0,05

0.20

-

rest

-

Nom.0.13

-

-

-

-

-

Nom.0.22

Nom.0.10

 

-

 

99.6

Chemical composition  of  CuFePMg (C19750)

Chemical composition, weight percentage,

Ag

Mg

Sn

Ni

Si

Cr

Zr

Fe

P

Pb

Zn

Co

Cu

-

0.01-0.20

0.05-0.4

0.05

-

-

-

0.35-1.2

0.10-0.40

max. 0,05

0.20

0.05

rest

-

Nom.0.10

Nom.0.22

-

-

-

-

Nom.0.8

Nom.0.25

 

-

 

99.6

Mechanical properties

Mechanical properties
UTS
[MPa]
YS
[MPa]
Elongation
[%]
HardnessYoung’s modulus
[GPa]
Kirchhoff’s modulus
[GPa]
Poisson ratio
500-670
450-655
2-15
130
Comments:
[HV]
119
No data 0,33

Mechanical requirements of CuFePMg alloy according ASTM standards (different tempers)

Temper

Tensile strength, MPa

Yield strength 0,2%, MPa

Elongation 50, %

Literature

O61

275-435

110

10

H02

365-435

250

6

H04

415-485

365

3

H06

460-505

440

2

H08

485-525

460

2

H10

505-550

485

1

Mechanical requirements of CuFePMg according PMX Industries INC

Temper

Tensile strength, MPa

Literature

min

max

HO20

365

434

HO40

414

483

HO60

462

503

HO80

483

524

Each copper alloy having the chemical composition shown in below table was melted in a coreless furnace and an  ingot-making was performed by a semi-continuous casting method to yield an ingot 70 mm thick, 200 mm wide and 500 mm long. The surface of each ingot was subjected to facing, followed by heating. There after hot rolling was performed to prepare a sheet 16 mm thick and  the resulting sheet was quenched in water from temperature 650°C or higher. Oxidized scale was removed and  there  after primary cold rolling was performed. The resulting sheet was subject to facing and thereafter to primary annealing and cold rolling. Subsequently, secondary annealing and finish cold rolling were performed and then strain relieving annealing at low temperature was performed to thereby yield alloy sheet about 0.2 mm thick.

Mechanical properties of CuFePMg alloys

No of alloy

Fe

P

Mg

Proof stress

Hardness

Wt %

MPa

HV

1

0,15

0,10

0,25

410

136

3

0,91

0,10

0,25

403

135

4

0,15

0,02

0,25

415

37

5

0,15

0,36

0,25

408

136

6

0,15

0,10

0,10

417

137

7

0,15

0,10

0,92

405

135

8

0,15

0,10

0,25

428

140

9

0,15

0,10

0,25

433

141

10

0,15

0,10

0,25

440

143

14

0,00

0,10

0,25

432

141

15

1,05

0,10

0,25

360

126

16

0,15

0,00

0,25

418

137

17

0,15

0,46

0,25

395

133

18

0,15

0,10

0,04

406

136

19

0,15

0,10

1,10

400

134

Hardness and electrical conductivity of CuFePMg alloy

Mechanical properties of CuFePMg alloys with Ni, Co, Zn and Sn additions

No of alloy

Fe

P

Mg

Ni

Co

Zn

Sn

Proof stress

Hardness

%wt

MPa

HV

1

0,10

1,00

0,25

0,20

0,20

0,10

0,10

430

140

2

0,10

0,10

0,25

0,20

0,20

0,10

0,10

392

133

3

0,10

0,10

0,25

0,20

0,20

0,10

0,10

390

132

4

0,10

0,10

0,25

0,20

0,20

0,10

0,10

421

138

5

0,10

0,10

0,25

0,20

0,20

0,10

0,10

390

132

6

0,10

0,10

0,25

0,20

0,20

0,10

0,10

420

138

Exploitation properties

This example compares the softening resistance of several alloys of this invention as previously described in the aforenoted examples to commercial alloys. Alloys were air melted with charcoal cover and Durville cast to yield twelve pound ingots 15mmx10mmx4,37 mm. The casting temperature was about 1125°C to about 1150°C. The resulting ingots were homogenized at about 850-9000C for 2 hours, then rolled from 4,37 to 1 mm in seven passes with no reheating. To resolutionize the precipitated alloying elements, the strips were returned to the furnace and held at about 850-900°C for 1 hour and then water quenched. The strips were then milled to remove oxide scale and cold rolled to 0,1 mm. The cold rolled strips were then annealed for 2 hours at about 500-5750C. The material was then cold rolled to 0,01 mm, annealed to about 450-500°C for about 2 hours and then measured for electrical conductivity. The material was then finally rolled to 0.025 mm gauge for property measurments. Softening resistance was determined by annealing samples of material at 0.025 mm gauge for 1 hour at various temperatures between 300-550°C followed by measuring the respective Vickers hardness values.

Chemical composition of CuFePMg alloys

Type of alloy

Fe

Mg

P

Sn

Ni

Wt %

alloy 1

1

0,13

0,32

- -

alloy 2

0,99

0,13

0,33

0,25

-

alloy3

0,72

0,11

0,31

0,25

0,29

Softening curves of CuFePMg alloys

NO DATA AVAILABLE

C19700 exhibits good corrosion resistance in natural atmosphere (also sea air) and industrial atmosphere. It is insensitive to stress corrosion cracking.

Type of corrosion

Suitability

Literature

Atmospheric

Good

Marine environment

-

Stress crack

Good

Hydrogen embrittlement

-

Electrolytic

-

CuFePMg has a good relaxation stress resistance.

Stress remaining after 1000 hours of CuFePMg (C19700)

Each test piece was heated and held at 150°C for 1000 hours and the stress relaxation property of the test was evaluated according to the method of Electronics Materials manufacturers Association of Japan Standard. Specifically , one side of the test piece after heating was held, and the stress under a load 80% of the 0,2 proof stress as an initial stress was determined. This coarse dispersoids containing Mg and P having an average particle diameter exceeding the upper limit. In addition, the alloy has a markedly low electrical conductivity because of excessive P dissolved to form a solid solution and is low in strength, bendability and stress relaxation property.

Stress relaxation of CuFePMg alloys

No of alloy

Fe

P

Mg

Proof stress

Stress relaxation rate

Literature

Wt.%

MPa

%

1

0,15

0,10

0,25

410

16

3

0,91

0,10

0,25

403

16

4

0,15

0,02

0,25

415

19

5

0,15

0,36

0,25

408

15

6

0,15

0,10

0,10

417

19

7

0,15

0,10

0,92

405

17

8

0,15

0,10

0,25

428

15

9

0,15

0,10

0,25

433

14

10

0,15

0,10

0,25

440

15

14

0,00

0,10

0,25

432

15

15

1,05

0,10

0,25

360

17

16

0,15

0,00

0,25

418

23

17

0,15

0,46

0,25

395

22

18

0,15

0,10

0,04

406

23

19

0,15

0,10

1,10

400

22

Stress relaxation degree for CuFePMg alloy

 

Rheological properties and Proof stress of CuFePMg alloys with Ni, Co, Zn and Sn additions

No of alloy

Fe

P

Mg

Ni

Co

Zn

Sn

Proof stress

Stress relaxation rate

Literature

Wt%

MPa

%

20

0,10

1,00

0,25

0,20

0,20

0,10

0,10

430

21

21

0,10

0,10

0,25

0,20

0,20

0,10

0,10

392

24

22

0,10

0,10

0,25

0,20

0,20

0,10

0,10

390

24

23

0,10

0,10

0,25

0,20

0,20

0,10

0,10

421

22

24

0,10

0,10

0,25

0,20

0,20

0,10

0,10

390

25

25

0,10

0,10

0,25

0,20

0,20

0,10

0,10

420

25

NO DATA AVAILABLE

Bendability of CuFePMg according PMX Industries INC

Temper

90° good way

bad way

Literature

H020

0.5

0.5

Ho40

1

1

Ho60

1.5

2

Ho80

2

3

Typical yield strength available at a 1t 90 degree Good way bend samples 17.5 mm in width

A bending test of CuFePMg alloy sheet was performed. A test piece of 10 mm in width and 30 mm in length was taken from each sample, GOOD WAY beneding (the bending axis is perpendicular to the rolling direction) was preformed, and the presence or absence of cracking at the bending portion was visually observed under an optical microscope at a magnification of 50 times. The bendability was evaluated according to the following criteria: Good: no cracking, Fair: slight cracking, Failure: apparent cracking

 

Bendability of CuFePMg alloy

No of alloy

Fe

P

Mg

Proof Stress

Bendability

Literature

Wt %

MPa

 

1

0,15

0,10

0,25

410

good

3

0,91

0,10

0,25

403

good

4

0,15

0,02

0,25

415

good

5

0,15

0,36

0,25

408

good

6

0,15

0,10

0,10

417

good

7

0,15

0,10

0,92

405

good

8

0,15

0,10

0,25

428

good

9

0,15

0,10

0,25

433

good

10

0,15

0,10

0,25

440

good

14

0,00

0,10

0,25

432

good

15

1,05

0,10

0,25

360

good

16

0,15

0,00

0,25

418

failure

17

0,15

0,46

0,25

395

good

18

0,15

0,10

0,04

406

failure

19

0,15

0,10

1,10

400

fair

Bendability of CuFePMg alloy

No of alloy

Fe

P

Mg

Ni

Co

Zn

Sn

Proof stress

Bendability

wt %

MPa

20

0,10

1,00

0,25

0,20

0,20

0,10

0,10

430

failure

21

0,10

0,10

0,25

0,20

0,20

0,10

0,10

392

failure

22

0,10

0,10

0,25

0,20

0,20

0,10

0,10

390

fair

23

0,10

0,10

0,25

0,20

0,20

0,10

0,10

421

Failure

24

0,10

0,10

0,25

0,20

0,20

0,10

0,10

390

failure

25

0,10

0,10

0,25

0,20

0,20

0,10

0,10

420

fair

NO DATA AVAILABLE
Fabrication properties

Fabrication properties
Value Comments
SolderingGood

BrazingGood

Hot dip tinningExcellent

Laser weldingGood

Oxyacetylene WeldingFair

Gas Shielded Arc WeldingGood

Coated Metal Arc WeldingFair

Spot WeldGood

Seam WeldGood

Butt WeldGood

Capacity for Being Cold WorkedGood

Capacity for Being Hot FormedGood

Forgeability Rating65
65% of C37700 (forging brass)
Machinability Rating20
20% of C36000 (free-cutting brass)
Copyrights © LTPMN 2012. All rights reserved